Органическое топливо. Жидкое топливо и его характеристика Нужна помощь по изучению какой-либы темы

Тема 1. Генерация и утилизация теплоты

Лекция 1

§ 1. Классификация топлива. Показатели качества топлива

Твердое топливо: а) естественное
Некоторые металлургические печи отапливаются
пылеуглём, но чаще уголь используют как сырье
для получения искусственных газов, применяемых
впоследствии для отопления печей.
б) искусственное
Кокс – пористые, механически прочные куски серого
цвета, получаемые при нагревании измельченного
каменного угля без доступа воздуха до температуры
950-1050 оС. Это наиболее дорогое из всех видов
металлургического топлива.
Иногда вместо кокса используют термоантрацит,
получаемый при термической обработке
продуваемого водяным паром антрацита
(высококачественного угля, при горении которого
не образуются углеводороды, и который горит,
поэтому, коротким пламенем и бездымно).

Из всех видов жидкого топлива
в металлургии используют в основном
мазут – остаток фракционной
перегонки нефти после отгонки
бензина, лигроина, керосина
и газойля.
Мазут сгорает почти полностью, так как
имеет малую зольность; он немного
легче воды. Качество мазута
характеризуется температурой
вспышки и застывания. Температура
вспышки, – при которой пары мазута
в смеси с воздухом вспыхивают
при приближении пламени;
эта температура значительно ниже
температуры воспламенения, при
которой жидкий мазут воспламеняется
самопроизвольно, без воздействия
постороннего пламени. Температура
застывания зависит от содержания
парафина в мазуте.

Газообразное топливо – основной вид применяемого
в металлургических печах органического топлива.
Его достоинства: удобство транспортировки, легкость
в управлении процессом горения и возможность
создания газовых смесей, обладающих различной
теплотой сгорания. Недостатки: низкая плотность
и взрывоопасность.
а) естественное
Различают природный газ вулканического
происхождения, почти полностью состоящий
из метана CH4, и попутные газы нефтяных
месторождений, в состав которых входят и другие
углеводороды.

б) искусственное
Побочными продуктами производства являются
коксовый и доменный газы, состоящие,
соответственно, в основном из H2, CH4, CO и из N2,
CO, CO2.
Генераторный газ получают путем газификации,
т.е. превращения твердого или жидкого топлива
в горючий газ при неполном окислении воздухом,
кислородом или водяным паром при высокой
температуре. Генераторный газ содержит CO и H2 –
продукты восстановления CO2 и H2O углеродом
газифицируемого топлива (угля, мазута, кокса).
Установка по газификации
твердого топлива
производства ФГУП «НПЦ
газотубостроения «Салют»»

Химический анализ позволяет определить
элементарный химический состав топлива:
C + H + O + N + SЛ + A + W = 100 % по массе,
органическая
горючая
сухая
рабочая масса
где A – зола, W – влага.
Находящаяся в топливе
сера делится на летучую
(горючую) и минеральную
(негорючую), входящую
в состав золы.
Горючая сера

Теплота сгорания топлива – количество
теплоты, выделяющееся при полном
сжигании 1 кг или 1 м3 топлива, Дж/кг
(Дж/м3).
Высшая теплота сгорания QВР - количество


водяные пары конденсируются в зоне
горения и находятся при 0 оС
(фактическое количество теплоты
меньше).
Низшая теплота сгорания QНР - количество
теплоты, выделяющееся при сгорании
единицы топлива при условии, что
испаряющаяся в процессе горения влага
находится в продуктах сгорания в виде
пара, охлажденного до 20 оС.

Теплота сгорания различных видов топлива колеблется
в широких пределах. Для мазута, например, она
составляет свыше 40 МДж/кг, а для доменного газа –
около 4 МДж/м3.
Для сравнительной оценки различных видов топлива
вводят понятие условного топлива, для которого
низшая теплота сгорания
QНР = 29,3 МДж/кг.

§ 2. Кинетический и диффузионный режимы горения топлива

Горение заранее подготовленной смеси топлива
с воздухом или кислородом называют кинетическим;
а горение, протекающее одновременно
со смесеобразованием – диффузионным.
Гомогенное и гетерогенное горение –
соответственно, горение газа
и горение твердого или жидкого
топлива. Гетерогенное горение
включает в себя элементы
гомогенного. Например,
при нагреве частицы угля перед
ее воспламенением из нее
Зажигательная поверхность
выделяются летучие вещества,
спичечного коробка покрыта
которые, смешиваясь с кислородом, смесью красного фосфора
и порошка стекла. В состав
сгорают в режиме гомогенного
спичечной головки входят
окислители (PbO2, КСlО3,
горения; таким образом, процесс
ВаСrO4) и восстановители
горения протекает только
(S, Sb2S3).
на границе раздела фаз.

Рассмотрим гомогенное горение как более общее.
Коэффициент расхода воздуха
VВД
n Т –

отношение действительного расхода воздуха,
затрачиваемого для сжигания единицы топлива,
к стехиометрическому (теоретически необходимому).
Например, из реакции горения метана
CH4 + 2 O2 = CO2 + 2 H2O
видно, что для полного сгорания 1 м3 метана
необходимо подавать 2 м3 кислорода. Если кислорода
подают на 5 % больше, то n = 1,05.
Коэффициент расхода воздуха является важнейшим
параметром, путем изменения которого регулируют
процесс горения: температуру горения, количество
и химический состав продуктов сгорания,
устойчивость процесса горения.

Пламя представляет
собой светящуюся газовую
оболочку, в которой
происходит
экзотермическая реакция
газообразных продуктов
разложения материала
с окислителем.
Сгорание топлива в пламенных печах
производится в факеле.
Факел – это состоящая
из компонентов с различными
физическими свойствами
(топливо, воздух и продукты
сгорания) струя, в пределах
которой осуществляется горение.
Фронт пламени – зона интенсивной
реакции и резкого возрастания
температуры. Фронт пламени
делит факел на две зоны:
внутреннюю и внешнюю.
Во внутреннюю зону подается
топливо и окислитель,
либо только топливо; туда же
диффундирует из пламени часть
высокотемпературных продуктов
сгорания. Во внешней зоне
находятся продукты сгорания,
либо продукты сгорания
и окислитель (при n > 1).

Рассмотрим кинетический ламинарный факел, который
образуется при горении струи топлива и окислителя,
истекающей из трубы в неограниченный объем
воздуха. Если сбоку к срезу трубы поднести
запальник, то произойдет зажигание горючей смеси.
Образуется тонкий фронт пламени в виде конической
поверхности:
wi
wn
un
R
i

w
w0
горючая смесь

Пламя с нормальной скоростью распространения
пламени un, зависящей от физико-химических свойств
горючей смеси, распространяется навстречу
движению струи и к ее оси.
На некотором расстоянии от среза трубы по периметру
вытекающей струи образуется зажигающее кольцо –
устойчивое кольцо пламени с диаметром, меньшим
диаметра выходного отверстия трубы, служащее
естественным запальником для свежей смеси.
У стенок трубы (ниже зажигающего кольца) смесь
охлаждается из-за теплоотвода через стенки трубы
и примешивания холодного воздуха из окружающей
среды – это приводит к снижению нормальной
скорости распространения пламени, и пламя сюда
не проникает. В процессе распространения
от зажигающего кольца к центру струи пламя
одновременно относится движущейся смесью
и достигает оси трубы на некотором расстоянии
от среза трубы, называемом длиной факела lФ.

Условием устойчивости фронта пламени является
un = wn = wi cos i,
где wn – проекция вектора скорости смеси в i–той точке
wi на нормаль к элементу фронта пламени в этой
точке, м/с;
i – угол между вектором скорости нормального
распространения пламени и вектором скорости смеси
в i–той точке.
Начиная с определенного значения средней скорости
горючей смеси на выходе из горелки w0, произойдет
отрыв пламени. Это произойдет в тот момент, когда
нарушится условие равновесия применительно
к зажигающему кольцу. При увеличении w0 возрастает
количество смеси, проходящее через единицу
поверхности зажигающего кольца, следовательно,
уменьшается температура кольца и скорость
нормального распространения пламени в нем. Это
на фоне увеличения w0 приводит к отрыву пламени.

Верхний по скорости предел устойчивости пламени –
предельно большая скорость потока, при которой
горение устойчиво.
Нельзя допускать и проскока пламени – его
проникновения в трубу при слишком значительном
уменьшении скорости смеси. Нижний по скорости
предел устойчивости пламени – предельно малая
скорость истечения горючей смеси, при которой
еще не наступает проскок.

Определим, от чего зависит длина факела при устойчивом
горении, для этого примем, что радиус зажигающего
кольца примерно равен радиусу выходного отверстия
трубы. Тогда время, в течение которого пламя
распространится от границы струи до ее оси,
R
t .
un
За это же время пламя сместится вдоль оси факела
на расстояние, равное длине факела:
w0 R
,
lф w t w0 t
un
где w – средняя по сечению скорость движения газов
в пределах факела м/с.
Таким образом, длина факела зависит от радиуса
среза трубы, средней скорости истечения, а также
от температуры и состава смеси (от этих факторов
зависит величина un).

Рассмотрим диффузионный ламинарный факел.
Пусть из трубы подается ламинарная струя топлива,
которое в пограничном слое при помощи
молекулярной диффузии и конвекции
перемешивается с воздухом, образуя горючую смесь.
Если к периферии струи поднести запальник,
то по ее периметру возникнет зажигающее кольцо
и сформируется фронт пламени конической формы:
4
3
2
1
газ
1 – потенциальное
ядро потока,
2 – топливновоздушная смесь,
3 – фронт пламени,
4 – смесь
продуктов сгорания
и воздуха
Все горючие твердые вещества
подразделяются на два класса:
безгазовые и газофицирующиеся
при горении.
К веществам и материалам
первого класса, не образующим
при горении газообразных
продуктов, могут быть отнесены
различные термитные смеси,
продуктами сгорания которых
являются нелетучие
конденсированные вещества оксиды металлов.
Подавляющее большинство
твердых веществ и материалов
относятся ко второму классу.

Предположим, что фронт образовался в точках
пространства, куда горючее поступает в избытке
(n < 1). В этом случае часть горючего пройдет сквозь
фронт в окружающую среду, смешается там
с кислородом и сгорит, при этом приход кислорода
во фронт еще больше сократится. Очевидно, в таких
условиях фронт пламени не может быть устойчивым.
Подобным образом можно доказать, что фронт
пламени не может быть устойчивым в точках, куда
кислород поступает в избытке (n > 1).
Так как зажигающий пояс находится на границе струи
с окружающей средой, то есть в зоне с очень низкими
скоростями, то его устойчивость высока. Проскок же
вообще невозможен, поскольку через трубу подается
чистый газ.

Время, в течение которого завершится
формирование факела, равно времени диффузии
воздуха от периферии к оси струи:
R2
,
t
2 D
где R – радиус трубы, м;
D – коэффициент диффузии, м2/c.
Длина факела
R 2 w0 .
lф w t w0 t
2 D
Учтем, что секундный расход газа через трубу
V = w0 R2 w0
Окончательно имеем
V

.
D
V
.
2
π R

Расчет горения топлива включает в себя следующие
этапы.
1. Определение расхода воздуха на горение.
Производится по содержанию избыточного кислорода
в продуктах сгорания, %:
21
,
21 O2 ИЗБ
где 21 - % кислорода в земной атмосфере.
n
SPC-93-1195 - Сигнализатор
газа O2, газоанализатор
стационарный

2. Определение количества и состава продуктов сгорания.
Производится на основании уравнений горения.
Рассмотрим пример горения метана при подаче
теоретического количества воздуха:
При сгорании 1 м3 метана образуется 1 м3 CO2 и 2 м3 H2O.
Кроме того, с воздухом вносится
2 3,762 = 7,524 м3 азота.
Таким образом, полное количество продуктов сгорания:
1 + 2 + 7,524 = 10,524 м3.

Состав продуктов сгорания в объемных процентах:
1
100 9,5 ;
10,524
2
100 19 ;
H 2O . . .
10,524
CO2 . . .
N2 . . .
7,524
100 71,5 .
10,524
Если бы сжигание метана производилось с n > 1,
то общее количество продуктов сгорания возросло бы
из-за увеличения количества N2 и наличия
избыточного О2 в продуктах сгорания.
Правильность расчета подтверждается составлением
материального баланса в единицах массы, так как
объемы реагирующих веществ могут быть не равны
объемам полученных при горении соединений.

3. Расчет температуры горения.
Калориметрической называется температура, которая
могла бы быть достигнута при условии, что вся теплота,
выделившаяся при горении, использована только
на нагрев продуктов сгорания:
QНР

,
vД c
где vД – объем дыма, образующегося при сгорании единицы
топлива, м3/м3 (кг/м3);
с – удельная теплоемкость продуктов сгорания, Дж/(м3 оC).
Горение свечи является примером процессов
горения плавящихся материалов, которым
пламя дает теплоту, достаточную
для их плавления, испарения и разложения.
Парафиновая свеча имеет минимальную
температуру 1400°С.

Из-за частичной диссоциации CO2 и H2O, сопровождаемой
поглощением теплоты, теоретическая температура
всегда ниже калориметрической:

QНР QДИСС
vД c
,
где QДИСС – определяемое расчетным путем количество
теплоты, израсходованное на протекание процесса
диссоциации.
Из-за нагрева стен печи и заготовок действительная
температура еще меньше:

QНР QДИСС QПОТ
,
vД c
где QПОТ – количество теплоты, отдаваемое продуктами
сгорания.

Величина QПОТ зависит от условий теплообмена
продуктов сгорания с окружающей средой
и оценивается с помощью выражения
tД = tК ПИР,
где ПИР = 0,65 0,8 – зависящий от конструкции печи,
ее теплового режима и определяемый
экспериментальным путем пирометрический
коэффициент.
Величина действительной температуры дает оценочную
характеристику условий теплообмена при сжигании
топлива в рабочем пространстве печи.

§ 3. Конструкции и схема выбора устройств для сжигания топлива

Для сжигания газообразного топлива применяются
устройства, называемые горелками. По принципу
смешения газа с воздухом их делят на две группы:
с предварительным и с внешним смешением.
Внутри каждой группы классификация производится
по конструктивным признакам, которые обусловлены
способом образования смеси.
Наиболее распространенные горелки
с предварительным смешением – инжекционные,
использующие инжектор – устройство, в котором
вытекающая из сопла струя газа увлекает за собой
окружающий воздух, и перемешивание газа и воздуха
достаточно полно происходит в смесительной трубе
до попадания в печь.

Рассмотрим истечение турбулентной струи газа
в открытую с обоих торцов цилиндрическую камеру:
В
Г
В
До соприкосновения со стенами камеры струя ведет
себя как свободная, увлекая окружающий воздух
через входной торец камеры. В связи с ограниченным
проникновением окружающей среды кинетическая
энергия струи не может быть полностью
израсходована, и потому она частично превращается
в потенциальную энергию давления, – струя топлива
совершает работу противодавления, нагнетая
подготовленную смесь в рабочее пространство печи.
В работе инжекционных горелок существенную роль
играет туннель, стенки которого в процессе горения
раскаляются, что обеспечивает поджигание новых
порций газо-воздушной смеси и способствует
устойчивому горению.

Инжекционная газовая
горелка вихревая (ГГВ)
низкого и среднего
давления ООО «ПКФ
«СпецКомплектПрибор»»
Достоинства горелок с предварительным смешением:
1) малая величина коэффициента расхода воздуха,
что обеспечивает наивысшую температуру горения
для данного топлива по сравнению с другими
горелками; 2) автоматическое поддержание
постоянного соотношения расходов газа и воздуха;
3) отсутствие воздухопроводов.

Широко распространенной горелкой
без предварительного смешения является
двухпроводная. По наружной трубе подается воздух,
образующий облекающий поток по отношению к газу,
который подается по внутренней трубе:
В
Г
В турбулентных двухпроводных горелках воздушная струя
закручивается по отношению к газовой, что способствует
улучшению перемешивания топлива и окислителя.
Плоскопламенные горелки создают разомкнутый факел
с углом раскрытия 180о, растекающийся тонким слоем
и прилегающий к поверхности кладки печи, в которую
вмонтирована горелка. При этом не только придается
вращательное движение воздушному потоку,
но и применяются специальной формы горелочные
камни и рассекатели.

Плоскопламенная
горелка (FFB),
Hotwork
Combustion
Technology
Limited,
Великобритания
Горелки дутьевые типа
"труба в трубе"
Уфалейского завода
металлоизделий
(г. Верхний Уфалей
Челябинской области)
"Горящее гало". Мощная промышленная горелка,
работающая в относительно слабом режиме.
Chuck Baukal/John Zink Company
Достоинства горелок без предварительного
смешения: 1) возможность создания факела
специальной формы; 2) возможность подогрева
воздуха; 3) компактность.

Турбулентные горелки выбирают следующим образом:
Р
1. Зная теплоту сгорания QН и часовой расход топлива B
на горелку, определяют ее теплопроизводительность
Q B QНР.
2. По величине Q, задаваясь скоростью выхода топлива
из горелки (20 30 м/с), с помощью специальной
номограммы определяют диаметр горелки D.
3. Определив D, по перечисленным выше данным находят
все необходимые размеры горелки.
4. Действительное давление газа и воздуха определяют
по формулам:
pГ = Г pГ, pВ = В pВ,
где pГ и pВ – расчетное динамическое давление газа
и воздуха;
Г = 0,7 0,8 и В = 2,5 3 - коэффициенты потерь.

В случае если не допустим контакт нагреваемого
металла с продуктами сгорания, сжигание газа
производят в радиантных трубах, выполненных
из жаростойких сталей, а рабочее пространство печи
заполняют защитным газом.
Радиационная труба
производственноинжиниринговой
компании «ПЕРОЛ»
Радиантная труба
ООО «Воткинский
завод ТО» (Удмуртия)

Жидкое топливо сжигают с помощью форсунок,
обеспечивающих дробление мазута на мелкие капли
перед его сжиганием, для чего используется энергия
самого распыляемого топлива, либо вентиляторного
воздуха, либо газообразного распылителя высокого
давления: компрессорного воздуха, водяного пара.
Твердое топливо сжигают в пылеугольных горелках.
Жидкотопливная горелка
R20-30 немецкого
производителя Giersch
Пылеугольная горелка
ООО НТФ "ЭНЕРГОМАШинжиниринг" (г. Таганрог)

§ 4. Тепловые эквиваленты сырьевых материалов шихты

Шихтовые материалы могут выполнять функцию
технологического топлива в случае,
когда количество выделившейся в результате
экзотермических реакций теплоты сопоставимо
с энергетическими затратами на осуществление
технологического процесса. Процессы, протекающие
за счет химической энергии сырьевых материалов,
называют автогенными.
Примером технологического топлива могут служить
сульфидные материалы, применяемые при выплавке
меди. Их энергообразующими компонентами
являются Fe и S, входящие вместе с Cu в сложные
химические соединения.
Пирит FeS2
Халькопирит
CuFeS2

Состав шихты, как правило, задают содержанием
S и Cu, тогда теплота сгорания шихты
QХШ = 119,4 S – 12,4 Cu ,
где S и Cu – содержание серы и меди в шихте,
выраженное в % от массы.
Эта формула получена перемножением величины
тепловых эффектов реакций
на соответствующие им количества
энергообразующих компонентов и сложением
полученных результатов. Знак «–» перед
вторым слагаемым обусловлен тем,
что восстановление сульфида меди оксидом
меди является эндотермической реакцией.

Для сравнения потенциальных энергетических
возможностей сырьевых материалов и топлива
и оценки их взаимозаменяемости в условиях
конкретного технологического процесса используют
понятие топливного эквивалента шихты,
который показывает, какое количество условного
топлива заменяет тонна шихты.
Тепловым эквивалентом шихты называют
количество теплоты, используемое на протекание
технологического процесса, из общего количества
теплоты, выделившейся при окислении единицы
массы шихты, кДж/кг. Перегрев содержащихся
в печи материалов ведет к нарушению
технологического режима и поэтому из общего
количества теплоты, полученного за счет химической
энергии сульфидов, в печи может быть использована
только ее часть.

Используют понятия теплогенерационной
и теплообменной составляющей теплового эквивалента
шихты, которые соответственно показывают, какое
количество теплоты, используемой в печи, подводится
к продуктам плавки в процессе теплогенерации
и за счет теплообмена.
Известно, что продукты окисления сульфидов получают
теплоту непосредственно при протекании
экзотермических реакций, и потому считается,
что скорость подвода теплоты к веществам, участвующим
в реакциях окисления, определяется скоростью
теплогенерационных процессов. К остальным материалам
теплота подводится от продуктов окисления сульфидов
за счет теплообмена: таким образом, скорость подвода
теплоты к флюсам и породообразующим компонентам
определяется интенсивностью протекающих в печи
теплообменных процессов.

§ 5. Генерация теплоты за счет электрической энергии

При наложении электромагнитного поля в проводящей
среде электроны проводимости обусловливают ток
проводимости:
J N e e v Д,
где – вектор плотности тока проводимости, А/м3;
Ne – плотность электронов проводимости, м-3;
e = 1,602 10-19 Кл – заряд электрона;
vД 10-3 10-5 м/c – скорость «дрейфа» электронов.
При неупругом взаимодействии электроны передают
избыток кинетической энергии ионам, увеличивая
амплитуду их колебаний, что и определяет
повышение температуры, то есть нагрев вещества.

Если прохождение тока проводимости не связано
с изменением структуры вещества и не сопровождается
химическими реакциями, то, В соответствии с законом
Джоуля-Ленца, внешняя работа электрических сил
целиком идет на изменение тепловой энергии
в единице объема нагреваемого вещества:
N e v Д F qV ,
где F – сила, действующая на электрон, Н;
qv – удельная скорость преобразования энергии, Вт/м3.
Последнее выражение выражает закон теплового
действия тока проводимости и является частным
случаем закона сохранения энергии.
Теплотехнические возможности теплогенерации по закону
Джоуля-Ленца зависят от: 1) способа подвода
электромагнитной энергии; 2) степени равномерности
qv в объеме нагреваемого тела.

Джеймс Прескотт ДЖОУЛЬ (1818–
1889) – английский физик. Изучал
природу тепла и обнаружил ее связь
с механической работой. Это привело
к теории сохранения энергии, что,
в свою очередь, привело к разработке
первого закона термодинамики.
Он работал с лордом Кельвином
над абсолютной шкалой
температуры, делал наблюдения
над магнитострикцией (изменение
объема и линейных размеров тела
при изменении состояния его
намагниченности), открыл связь
между током, текущим через
проводник с определенным
сопротивлением и выделяющейся
при этом теплотой, названный
законом Джоуля (1841).
Эмилий Христианович ЛЕНЦ (1804–1865) –
знаменитый русский физик. Работал
в области электромагнетизма.
Важнейшие результаты его исследований
излагаются и во всех учебниках физики. В их
числе закон индукции (правило Ленца), по
которому направление индукционного тока
всегда таково, что он препятствует тому
действию (например, движению), которым
он вызывается (1834) и закон Джоуля и
Ленца: количество теплоты, выделяемое
током в проводнике, пропорционально
квадрату силы тока и сопротивлению
проводника (1842).

Возможно 2 способа прямого подвода энергии:
1) кондукционный, когда вектор напряженности
электрического поля E , В/м, направлен вдоль оси
нагреваемого электропроводного тела (т.е. ток
проводимости направлен вдоль оси нагреваемого
тела);
2) индукционный, когда вектор E направлен по нормали
к оси и переменное электромагнитное поле
индуцирует вихревые токи проводимости.
Когда невозможно обеспечить удовлетворительный
нагрев, диссипацию энергии обеспечивают косвенной
теплогенерацией, для чего используют электрические
нагреватели.

Существуют 3 группы электронагревателей:
1. Металлические из хромоникелевых (нихром) и
железохромоалюминиевых (фехраль) сплавов, имеющие
предельную рабочую температуру 800–1200 оС.
В современных электропечах сопротивления используют:
- проволочные
спиральные,
- ленточные
зигзагообразные
и проволочные зигзагообразные нагреватели.

2. Керамические (карборундовые) из SiC применяют
в тех случаях, когда необходимо иметь температуру
нагревателя 1250–1450 оС. Их изготавливают в виде
трубок.
3. Металлокерамические нагреватели из дисилицида
молибдена MoSi2 имеют предельную рабочую
температуру 1450–1680 оС. Наиболее употребительная
форма таких нагревателей – U-образная.
Карборундовые
нагреватели.
Размер: 26х400мм
и 38х400мм,
L=1200мм
Нагреватели
из дисилицида
молибдена

Алгоритм расчета нагревателей:
1. Находят рабочую температуру
tН tМКОН + 100 оС.
2. Выбирают материал и определяют величину
его удельного электросопротивления, Ом м.
3. По формуле для плотности результирующего
теплового потока в системе 2 параллельных
поверхностей находят удельную поверхностную
мощность идеального нагревателя, т.е. такого,
который не излучает сам на себя:
ω ИД
σ 0 TН4 TМ4
1
1
1
εН εМ
, Вт/м2.

5. Выбирают тип электрического соединения
нагревателей и находят величину фазового
напряжения. При схеме соединения «треугольник»
фазовое напряжение равно сетевому UФ = UС.
При схеме соединения «звезда»

.

3
6. По величинам мощности печи N, UФ, и
рассчитывают размеры нагревателей и выбирают
их количество.
Генерация теплоты по закону Джоуля-Ленца имеет
место в индукционных печах и печах сопротивления
прямого и косвенного действия.

Генерация теплоты за счет ускорения потока электронов
основана на явлении термоэлектронной эмиссии –
испускании электронов нагретыми телами, например,
металлопленочными катодами из тугоплавких металлов
с пленкой из щелочных, щелочноземельных
и редкоземельных металлов (элементы I-III групп
периодической системы), помещенными
в электрическое поле. Поступающие в межэлектродный
промежуток электроны формируются в электрополе
в виде направленного потока быстролетящих
(со скоростью 100 тыс. км/с) электронов,
называемого электронным лучом.
Во избежание рассеяния приобретенной кинетической
энергии электроны не должны сталкиваться
с молекулами газовой среды, для чего обеспечивают
распространение потока электронов в вакууме.

Мощность электронного луча
P I А U А k U А5 / 2 ,
где I А k U А3 / 2 – сила тока переноса в вакууме,
связанная с величиной ускоряющего напряжения UА
так называемым «законом трех вторых» в отличие
от закона Ома;
k – постоянная, характеризующая размеры и форму
катода и анода.
Из-за соударения электронного луча со связанными
электронами нагреваемого вещества возможно
возникновение рентгеновского излучения, по этой
причине ограничивают величину UА (не более 35 кВ).
Возможность управления движением электронов
позволяет фокусировать и перемещать электронный луч
по поверхности нагрева, создавая заданную плотность
теплового потока.
Способ применяют в электронно-лучевых печах.

Теплогенерация за счет электрических разрядов в газах
заключается в осуществлении разряда путем разрушения
нейтральных молекул под действием электромагнитного
поля. При этом образуется плазма – частично или
полностью ионизованный газ. В металлургии используют
так называемую низкотемпературную плазму с
температурой 5 20 тыс. К (высокотемпературная плазма
с температурой свыше 100 тыс. К является объектом
исследований по управляемому термоядерному синтезу).
Суммарные энергозатраты на создание электрического
разряда в газах
WΣ = WЭ + WД + WИ,
где WЭ – энергия, идущая на увеличение энтальпии газа;
WД – энергия, идущая на диссоциацию многоатомных
молекул;
WИ – энергия, идущая на ионизациюю, т. е. отрыв
электронов.

Удельная энтальпия плазмы ступенчато возрастает при
увеличении температуры. При относительно низкой
температуре идет процесс диссоциации многоатомных
газов (например, черырехокись азота распадается
на 2 радикала двуокиси, имеющие на внешнем уровне по
одному неспаренному электрону: N2O4 2 NO2), а затем,
при дальнейшем возрастании температуры, происходит
ступенчатая ионизация с образованием одно-, двухи более зарядных ионов. Образование многозарядных
ионов происходит лишь при температуре > 30 тыс. К.
Чаще всего применяют дуговой (в плавильных печах) и
коронный разряд (в так называемых электронно-ионных
технологических процессах и для ионизации аэрозолей
при очистке дыма). В промышленности применяют также
искровой (для электроэрозионной обработки металлов)
и тлеющий разряд (для распыления металлов при
производстве полупроводников и сверхпроводников).

Ионизатор воздуха
"Аэроион-25"
(модификация
"Ромашка"),
использующий
коронный
электрический
разряд
Дуговой электрический
разряд в ксеноновой лампе
Молния – искровой
электрический разряд в атмосфере
Огни святого Эльма тлеющий электрический разряд

Определение моторному топливу дать легко – это горючее для двигателей внутреннего сгорания. Традиционно классификация основных видов моторного топлива связана с тем, из чего они производятся. То есть топливо рассматривается как продукт перегонки нефти. По этому критерию нефтепродукты делятся на две группы – дистиллятные и остаточные. К первым относятся все виды бензинов, некоторые виды дизельного топлива, керосин и некоторые другие малоизвестные виды. Например, газойль и лигроин. А вот солярка и мазут – это остаточные виды. Их фракции получаются при максимальных температурах перегонки.

Разумеется, дизельное топливо евро 4 относится к дистиллятным продуктам, и в его названии мы видим ещё один признак классификации моторного топлива – экологические свойства. Но он не единственный. На основные характеристики по назначению, то есть для применения в двигателе, влияют и другие факторы. У всех видов топлива, представленных, к примеру, на сайте http://oilresurs.ru/, важнейшей характеристикой является воспламеняемость, то есть способность воздушно-топливной смеси эффективно сгорать.

Важна ещё испаряемость и вязкость топлива, от которой зависит способность его прокачки по топливной системе двигателя, а также содержание смолистых веществ. Эта характеристика, а также степень коксуемости и зольности, влияют на вредные отложения в двигателе. Качественное топливо должно иметь малую химическую активность и не иметь механических примесей. Именно такое моторное топливо перечисленных выше видов предлагает компания ООО «Ойл Ресурс Групп».

Однако, ими не исчерпываются все разновидности горючего для двигателей. Выше были рассмотрены только жидкие нефтепродукты, но широко используется и природный газ. Применяются две его разновидности – сжатый и сжиженный. Сжиженная смесь из пропана и бутана – это третий по распространённости в мире вид топлива. Преимущества – возможность использования на обычных бензиновых моторах и дизелях, экологичность и уменьшение износа двигателя. Разумеется, и меньшая стоимость.

Существуют и другие виды моторного топлива, альтернативные горючему из нефтепродуктов. На традиционных двигателях внутреннего сгорания используется в качестве топлива и спирт. Как правило, это не чистый этанол или метанол, а смесь с бензином в той или иной пропорции. Спирт могут добавлять и как присадку в небольшом количестве для улучшения характеристик, но альтернативным топливом такую смесь считают, если спирта в ней больше 85%. На основе растительного сырья и даже животных жиров производят биодизельное топливо, однако, в целом такие виды моторного топлива пока не получили широкого распространения.

Дизельное топливо по популярности уступает бензину, но продолжает использоваться в двигателях самых разных типов. При этом обладает множество неоспоримых достоинств перед другими видами топлива. Имеются определенные особенности дизеля. В первую очередь это касается классификации.

Ранее дизельное топливо чаще использовалось для заправки двигателей тракторов, а также аналогичной техники. Причиной тому является более низки расход топлива на каждый мотто-час, потери мощности по сравнению с бензиновыми двигателями незначительные. Ещё одна причина распространенности дизельных моторов – экологическая и пожарная безопасность. Так как взрывы, возгорания газового оборудования происходят на порядок чаще.

Дизельное топливо является продуктом нефтяной промышленности. Появление его стало следствием возникновения необходимости двигателей максимально эффективных и, в то же время, достаточно мощных. Рудольф Дизель, чьим именем называется данный вид топлива, не является первооткрывателем. Двигатель, работающим на солярке, был разработан ещё в 1860 году. Но по ряду причин использование его не имело экономического смысла.

В то же время на рубеже XIX и XX веков германии срочно потребовались моторы, работающие на более дешевом топливе, альтернативном бензину и светильному газу. Решением стало изобретение Рудольфа Дизеля, который доработал ранее уже разработанную другим ученым конструкцию. Изначально дизельный генератор, ставший прообразом современного дизельного двигателя, имел всего 2 цилиндра. В дальнейшем было добавлено ещё 2.

Существует несколько альтернативных названий дизельного топлива. Одно из таковых – солярка. Произошло данное слово от немецкого Solarol – солнечное масло. Ранее именно так и называли утяжеленную фракцию нефти, получаемую в результате переработки. Именно она является первым вариантом топлива этого вида. С течением стандарты, устанавливаемые к дизелю, претерпели серьезные изменения. В каждом стране в XX веке были разработаны собственные стандарты классификации дизельного топлива.

Например, в Советском союзе долгое время действовал ГОСТ 1666-42 и ГОСТ 1666-51. Официальное обозначение дизельного топлива было «соляровое масло». Применялось оно для заправки среднеоборотных двигателей – от 600 до 1000 об/мин. «Солярка» того времени не могла быть использована в быстроходных двигателях, её состав и свойства достаточно существенно отличатся от современно дизельного топлива.

Основные параметры

Все виды дизельного топлива можно разделить на две основные категории:

  • для быстроходных двигателей;
  • для тихоходных двигателей.

Дистиллятное маловязкое масло подразумевает заливку в двигателя автомобилей. Имеющее более высокую вязкость топливо заливают обычно в различные тихоходные машины. Это трактора, тихоходные речные суда и многое другое.

Важно перед заливкой топлива в конкретную технику убедиться в соответствии его свойств необходимым стандартам. В противном случае камера сгорания будет повреждена, мотор попросту может выйти из строя. Что приведет к необходимости его капитального ремонта.

Существенно различается процесс получения обозначенных выше типов топлива. Дистиллятное включает в себя очищенные соответствующим образом фракции керосинового типа. Применяется прямая перегонка – это позволяет сделать сгорание топлива максимально быстрым. В то же время топливо высокой вязкости включает в себя смесь мазута, а также керосиново-газойлиевых фракций.

В зависимости от различных факторов теплота сгорания топлива обоих типов может варьироваться. В среднем данный показатель составляет приблизительно 42 624 кДж/кг. Существует общий стандарт, которому должно соответствовать все без исключения дизельное топливо на сегодняшний день. Он обозначается как ГОСТ 32511-2013. Обязательным к применению он стал относительно недавно – 01.01.15 г.

Обязательно перед выпуском в продажу проводится отбор дизельного топлива на его пробу. При анализе параметров перечень некоторых характеристик должен находиться в пределах нормы. В противном случае в продажу такого типа топлива выпускать будет попросту недопустимо. К основным моментам относится:

  • вязкость, содержание жидкостей;
  • воспламеняемость;
  • содержание серы.

Вязкость и содержание воды

Исходя из данной характеристики устанавливают два основных вида топлива – зимнее и летнее. Основным параметром, в соответствии с которым осуществляется разделение на классы, является предельная температура фильтруемости, а также температура помутнения и застывания.

Важно помнить, что необходимо выбирать определенный тип солярки для заливки в определенный сезон. Нередки случаи, что использование несоответствующего типа солярки приводило к застыванию её в топливопроводе. Как следствие – имеет место невозможность эксплуатации техники в нормальном режиме.

Возможно использовать летнее дизельное топливо только при температуре более чем -100С. В противном случае будет иметь место не замерзание, но более высокая вязкость. Что приводит к негативным последствиям – проблема в работе двигателя или же невозможность его запуска. В некоторых транспортных средствах используется специальный подогрев для топлива. Это позволяет использовать любой вид солярки вне зависимости от времени года, окружающей температуры.

Ещё одной серьезной проблемой является факт наличия воды в топливе. Так как вода существенно тяжелее солярки, она начинает постепенно скапливаться в нижней части топливного резервуара. Как следствие – возможно образование водяной пробки в топливной системе автомобиля, иной техники. Подобное препятствует нормальной работе двигателя. Именно поэтому установлены основные стандарты касательно кинематической вязкости дизельного топлива. Данный показатель различается для летней/зимней солярки:

  • для летнего вида при температуре +200С и более – более 3сСт;
  • для зимнего вида – более 1.8 Сст;
  • для особой разновидности (арктической) – более 1.5 Сст.

Данный стандарт устанавливается ГОСТ 305-82 от 1982 года. Одним из обязательных условий соответствия данному стандарту является полное отсутствие воды в топливной смеси. Именно за счет этого возможно использование в обозначенных условиях эксплуатации.

Воспламеняемость

Одной из самых важных характеристик является цетановое число. Под данным показателем подразумевают возможность солярки возгораться при возникновении определенных условий в камере сгорания. Стандартым определяются ASTM D613. Для дизельного топлива температура вспышки устанавливается на уровне +7000С, определяется ASTM D93. Температура перегонки для солярки должна опять же укладываться в определенные стандарты – не менее 2000С и не более 3500С.

Количество серы в составе

Одной из самых важных характеристик, на основании которой типы топлива делятся на стандарты Евро 1-5 – это определенное количество серы на единицу объема. Под серой в рассматриваемом случае понимается наличие определенных соединений данного вещества. В перечень учитываемых при определении категорий входит:

  • меркаптан;
  • тиофен;
  • тиофан;
  • дисульфид;
  • сульфид.

В то же время элементарная сера, обозначенная в таблице Менделеева, как таковая не учитывается при определении стандартов. В соответствии с настоящими наиболее современными стандартами, применяемыми в Штате Калифорния и Европе, количество сернистых соединений на единицу объема не должно превышать 0.001 %. Это составляет приблизительно 10 ppm.

Многие автопроизводители говорят о том, что снижение количества сернистых соединений в солярке приводит к снижению его смазывающих качеств. Что приводит к более быстрому износу двигателя. Но данная позиция не является однозначной. На данный момент времени современная солярка включает дополнительные присадки, которые осуществляют смазку двигателя.

Классификация солярки в СССР

В соответствии с ГОСТ 305-82 солярка в Советском Союзе делилась на 3 основные категории:

  • летняя;
  • зимняя;
  • арктическая.

Под летней понималась солярка, использование которой рекомендовалось при температуре не ниже 00С. Температура вспышки устанавливалась на уровне л-0 или же 2-40. Под зимней понималась солярка, использование которой допускалось вплоть до -200С. В то же время не налагалось каких-либо ограничений на использование такой зимней солярки в летнее время года. Фактически, она являлась универсальной.

Солярка арктического типа – самая дорогая в производстве, использование её допускается при температуре до -500С. Требования к данному типу топлива устанавливаются максимально высокие.

Классификация дизельного топлива по видам

В Европейском союзе ещё с 1993 года используется специальная система стандартов, применяемая к дизельному топливу. Обозначается такой стандарт как EN-590. В соответствии с данным стандартом устанавливаются основные требования к количество содержащейся серы, а также иным характеристикам топлива. Самый первый стандарт обозначался как Евро-1. На данный момент действительным является стандарт Евро-5.

Стандарт этого типа позволяет классифицировать топлива температурным и климатическим зонам использования. Например, Class A-F подразумевает использование при температуре от +5 до -200С. Отдельные критерии существуют для температур отрицательных.

На территории Российской Федерации сразу от советских стандартов классификации решили перейти на европейский. На данный момент действительным является ГОСТ-Р 52369-2005. По своим параметрам он соответствует характеристикам установленным для EN-590.

Распределение осуществляется в зависимости от количество содержащейся серы:

  • вид №1 – менее 350 мг/кг;
  • вид №2 – менее 50 мг/кг;
  • вид №3 – менее 10 мг/кг.

Классификация дизельного топлива по классам

Также осуществляется разделение топлива этого типа на отдельные сорта в зависимости от использования в определенном климате. Главным критерием является предельная температура фильтруемости. Разделение на сорта осуществляется следующим образом:

  • СОРТ А – при температуре более +50С;
  • СОРТ В – при температуре более 00С;
  • СОРТ С – более -50С;
  • СОРТ D – более -100С и так далее.

Стандарты в ней устанавливаются максимально жесткие, так как невыполнение их приводит к проблемам с топливной системой при достижении окружающим воздухом достаточно низкой температуры.

Сегодня по классам разбивка осуществляется следующим образом:

  • Класс 0 – использование от -200С;
  • Класс 1 – от -260С;
  • Класс 2 – от -320С;
  • Класс 3 – от -380С;
  • Класс 4 – от -440С.

Существует специальная маркировка, применяемая на территории Таможенного союза такими странами, как Россия, Беларусь и Казахстан. Прежде, чем приступить к использованию такого топлива, стоит внимательно ознакомиться с требованиями климатического характера в определенном регионе. Использование несоответствующего может привести к серьезным неприятностям. Вплоть до выхода из строя двигателя в некоторых случаях. Подобные ситуации также имеют место.

Итог

На территории Москвы и Московской области относительно недавно перешли на стандарт топлива Евро-5. Именно по этой причине качество как солярки, так и бензина в данном регионе на порядок выше, чем в остальных. Выполнение данных стандартов топлива устанавливаются федеральным законодательством. Именно поэтому все без исключения компании-производители (Лукойл, Башнефть и другие) обязаны соблюдать устанавливаемые требования.

Контроль топлива на соответствие стандартам осуществляется на государственном уровне. При этом существует большое количество самых разных сортов, типов солярки. При наличии таковой возможности стоит заранее ознакомиться с этой информацией.



Топливо – это горючее вещество, выделяющее при сжигании значительное количество теплоты, которая используется непосредственно в технологических процессах и для обогрева, либо преобразуется в другие виды энергии.

По агрегатному состоянию топлива органического происхождения разделяются на твердые, жидкие и газовые (газообразные).

По происхождению органические топлива делятся на природные (естественные) и искусственные, получаемые различными методами.

Таблица 1.1

Классификация органического топлива

В зависимости от характера использования органическое топливо может быть разделено на энергетическое (для получения тепловой и электрической энергии) и на промышленное (для высокотемпературных теплотехнологических установок и систем). Энергетическое и промышленное топливо определяется также термином “котельно-печное топливо”.

    1. Элементарный состав и технические характеристики органического топлива

В состав органического топлива входят различные соединения горючих и негорючих элементов. Твердое и жидкое топливо содержит такие горючие вещества, как углерод C, водородH, летучую серуS л, и негорючие вещества – кислородO, азотN, золуA , влагуW . Летучая сера состоит из органическихS ор и колчеданныхS к соединений:S л =S ор +S к. Органическое топливо характеризуется:

Рабочей массой ;

Сухой массой ;

Горючей массой ;

Органической массой .

Сера органической массы не содержит колчеданную. Можно пересчитать состав топлива с одной массы на другую с помощью соответствующих коэффициентов (табл. 1.2)

Таблица 1.2

Пересчет состава топлива с одной массы на другую

Заданная масса

Искомая масса

органическая

Органическая

Газообразное топливо обычно приводится к сухой массе в объемных долях:

Важнейшими техническими характеристиками топлива являются теплота сгорания, жаропроизводительность, содержание золы и влаги, содержание вредных примесей, снижающих ценность топлива, выход летучих веществ, свойства кокса (нелетучего остатка).

Теплота сгорания (теплотворная способность) топлива - количество теплоты, выделяемое при полном сгорании единицы массы (кДж/кг) или объема (кДж/м 3) топлива. Теплота сгорания является характеристикой, определяющей расход топлива для работы топливоиспользующего оборудования. Различают высшую и низшую теплотворные способности топлива. При проектировании котлов и технологических агрегатов, в которых не используется скрытая теплота конденсации водяных паров, содержащихся в продуктах сгорания топлива, расчеты традиционно ведутся понизшей теплотворной способности топлива.

В тех случаях, когда имеет место использование в агрегатах скрытой теплоты конденсации водяных паров, в расчетах фигурирует высшая теплота сгорания топлива.

Низшую теплоту сгорания топлива можно определить, зная высшую теплоту сгорания

Теплоту сгорания топлива определяют экспериментально в калориметрической бомбе или в газовом калориметре. Принцип работы калориметров основан на том, что в них сжигается точно замеренная масса или объем топлива, выделяющееся тепло которого передается воде, начальная температура и масса которой известны. Зная массу воды, и замеряя повышение ее температуры, определяют количество выделенного тепла и теплоту сгорания топлива. При известном составе топлива теплота его сгорания может быть подсчитана аналитически. Рабочая низшая теплота сгорания твердого и жидкого топлива приближенно может быть определена по формуле Д.И. Менделеева, кДж/кг

где



– теплота сгорания каждого газа, входящего в состав топлива, МДж/м 3 ;C m H n ,H 2 S,CO,H 2 –содержание отдельных газов в топливе, % об.

Теплота сгорания отдельных газов, входящих в состав газообразного топлива, приведена в табл. 1.3.

Теплота сгорания различных видов топлива колеблется в очень широких пределах. Для сравнения разных видов топлива при определении норм расхода, запасов, экономии топлива введено понятие об условном топливе. Условным топливом называют топливо, низшая теплота сгорания которого равна Q у.т = 29310 кДж/кг (7000 ккал/кг).

Для пересчета расхода какого-либо вида натурального топлива в условное и обратно пользуются тепловым эквивалентом, представляющим собой отношение низшей теплоты сгорания рабочей массы натурального топлива к теплоте сгорания условного топлива

.

Органическое (углеводородное) топливо классифицируется:

1. По агрегатному состоянию – на твердое (уголь, торф, горючий сланец, растительное топливо), жидкое (нефть и продукты ее переработки), газообразное (природный и искусственный газы);

2. По происхождению – на естественное (добываемое из земных недр) и искусственное (получаемое в результате переработки естественного топлива и других природных веществ).

Основными характеристиками органического топлива являются: 1) элементарный химический состав; 2) удельная теплота сгорания; 3) выход летучих веществ; 4) зольность; 5) влажность; 6) сернистость.

Элементарный состав топлива . Состав твердого и жидкого топлива представляет сумму масс химических элементов: углерода С, водорода Н 2 , кислорода О 2 , азота N 2 , серы S, минеральных соединений А и влаги W. Сера может присутствовать в топливе в трех видах: органическая S 0 , колчеданная S к и сульфатная S c . Сумму S о +S к = S л называют летучей серой. В твердом топливе различают рабочую, сухую, сухую беззольную (горючую) и органическую массы, а в жидком – рабочую и сухую массы.

Состав рабочей массы: .

Индекс "р" означает, что состав топлива рассчитан на рабочую массу.

Состав сухой массы: .

Состав горючей массы: .

Состав органической массы: .

Элементы S, A и W – являются балластом органического топлива.

В справочниках приводится состав горючей массы топлива. Пересчет состава топлива с горючей на рабочую или сухую массу производится с помощью коэффициентов пересчета К гр, К гс:

Состав газообразного топлива представляет сумму долей объема компонентов: метана CH 4 , высших углеводородных соединений C m H n , водорода H 2 , азота N 2 , оксида углерода СО, диоксида углерода CO 2 , сероводорода H 2 S, кисло­рода O 2:

Удельная теплота сгорания топлива - это количество теплоты, выделившейся при полном сгорании единицы массы или объема топлива. Различают высшую и низшую удельную теплоту сгорания. Высшая удельная теплота сгорания Q р В – это количество теплоты, полученное при сгорании 1 кг твердого (жидкого) или 1 м 3 газообразного топлива (при температуре 0 °С и давлении 0,1013 МПа) и конденсации водяных паров, содержащихся в продуктах сгорания. Низшая удельная теплота сгорания Q р н не включает в себя теплоту конденсации водяных паров:

В расчетах используют низшую теплоту сгорания, так как продукты сгорания имеют температуру значительно выше, чем температура точки росы, при которой происходит конденсация водяных паров, содержащихся в продуктах сгорания. Низшая теплота сгорания твердого и жидкого топлива [кДж/кг] вычисляется по формуле Д.И. Менделеева:



Удельную теплоту сгорания газообразного топлива [кДж/м 3 ] определяют в расчете на сухую массу:

Для сопоставления различных видов топлива применяют понятие услов­ное топливо . При сгорании 1 кг условного топлива выделяется 29,3 МДж тепла ((Q р н) усл = 29,3 МДж/кг).

Выход летучих веществ характеризует жидкое и твердое топливо. Это смесь горючих и негорючих газов, выделяющихся из массы топлива при его нагревании от 110 до 1100° С. Чем больше выход летучих веществ, тем ниже температура воспламенения топлива и легче его зажигание. Данная характеристика зависит от возраста топлива и условий его формирования. Так, выход летучих веществ у торфа составляет 70%, бурого угля 45 ÷ 50%, каменных углей 25 ÷ 40%, у антрацита 3 ÷ 4%. Твердый остаток топлива после выхода летучих веществ называют коксом. Он может быть плотным, спекшимся или рыхлым. В энергетических установках используется топливо, непригодное для получения плотного кокса.

Зольность . Несгоревший остаток, образующийся после сгорания топлива и состоящий в основном из минеральных примесей, называется золой. Часть золы в процессе горения топлива под действием высоких температур оплавляется и превращается в шлак. Отношение массы золы к массе топлива в процентах называют зольностью. Бурые и каменные угли имеют зольность 10 ÷ 55%, сланцы 40 ÷ 60%, жидкое топливо 0,05 ÷ 1%. Зола уменьшает теплоту сгорания топлива, снижает интенсивность теплообмена вследствие осаждения на поверхностях нагрева, вызывает их износ, загрязняет окружающую среду.

Влажность – это количество влаги в топливе, выражен­ное в процентах. Повышенная влажность снижает теплоту сгорания топлива и вызывает трудности при его сжигании. Высокую влажность (до 50%) имеют бурые угли и торф, поэтому удельная теплота сгорания их невелика (8÷10 МДж/кг). Влажность каменных углей ниже и составляет 5 ÷ 8%.



Сернистость – это количество серы в топливе, выраженное в процентах. Наличие серы ухудшает качество топлива. При горении происходит соединение серы с кислородом, при этом образуется ядовитый газ. Происходит разрушение поверхности нагрева и выброс ядовитых газов в атмосферу.

Для сравнения топлива с различной влажностью, зольностью и сернистостью используют приведенные характеристики : характеристики рабочей массы топлива, отнесенные к его низшей теплоте сгорания (приведенные влажность W пр, зольность А пр и сернистость S пр, (%×кг)/МДж):

Топливо с W пр < 0,7 считается маловажным, а с W пр > 1,9 – высоковлажным. Топливо с A пр £ 1 – малозольное, а с A пр ³ 5 высокозольное.

Нефть и ее использование

Нефть образовалась в результате осадочных отложений в морской воде и недрах земли. Это бурая жидкость, имеющая своеобразный смоляной запах. Нефть состоит из трех углеводородных групп: 1) парафинов; 2) циклопарафинов (нафтены); 3) ароматических смол. В небольших количествах в нефти содержатся: сера (до 6%), кислород (до 4%), азот (до 1%) и следы некоторых металлов. По своим характеристикам (вязкость, цвет, содержание парафина и др.) нефть неоднородна, что обусловлено различным растительным происхождением и определяет возможность производства тех или иных нефтепродуктов.

Доля нефти в мировом энергетическом балансе составляет около 40%. По объему добычи нефти Россия занимает второе место в мире после Саудовской Аравии. Основные районы добычи в РФ: Западно-Сибирский, Волго-Уральский, Тимано-Печорский, Северо-Кавказский, север Сахалина. В Западной Сибири добывается самая дешевая и качественная нефть России. Глубина нефтеносных пластов достигает 2 км. Лидерами по добыче нефти в России являются компании «Роснефть», «Лукойл».

Добыча нефти. Разработка нефтяного месторождения начинается с бурения скважин. Буровая скважина использует ряд вращающихся стальных труб высокого давления, называемых установкой. Установка поддерживается буровой вышкой и управляется вращательным столом на платформе. Сначала из скважины бьет нефтяной фонтан, затем переходят на механизированные способы добычи: компрессорную, глубинно-насосную и др. После добычи нефть отделяется от сопутствующих воды и газов и перекачивается в нефтехранилища.

Переработка нефти . Переработка включает три основных процесса: перегонку, риформинг и ректификацию. В результате перегонки нефть разделяется на части – фракции, согласно молекулярному весу. Все фракции получают дальнейшую обработку для производства конечных продуктов. Наиболее ценные горючие продукты получают при химической переработке нефти: крекинге, пиролизе и ароматизации. Крекинг – это разложение высших углеводородов на простые. При сильном нагревании с катализатором (ок.500 о С) происходит каталитический крекинг, без катализатора – термический крекинг. При пиролизе нефти (700 – 900 о С) образуются этилен, бензол, толуол. Процесс ароматизации протекает в присутствии катализаторов по уравнению:

Переработка чаще сосредоточена в районах массового потребления нефтепродуктов и вдоль трасс нефтепроводов.

Транспорт нефти. Основными видами транспорта являются: трубопроводы, танкеры и железнодорожный транспорт. Так, почти вся добываемая на Ближнем Востоке нефть импортируется танкерами. Западная Европа с помощью танкеров ввозит около 90% сырой нефти, Япония – около 100%, США – 50%. Транспортировка Сахалинской нефти России также осуществляется танкерами. Водоизмещение современных танкеров составляет от 50 до 500 тыс. тонн. Имеется ряд супертанкеров водоизмещением до 800 тыс. тонн. В России основной вид транспорта нефти – нефтепроводы. Их протяженность составляет 70 тыс. километров. Для преодоления сопротивления трения вязкости нефтепродуктов в нефтепроводах требуется их насосная перекачка. Для горизонтальных трубопроводов мощность насосов равна:

где μ - вязкость передаваемой нефти; L - длина трубопровода; D -диаметр трубопровода; V - расход нефти:

,

где р 1 и р 2 – разность давлений в трубе.

Статьи по теме: